If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+14x-196=0
a = 3; b = 14; c = -196;
Δ = b2-4ac
Δ = 142-4·3·(-196)
Δ = 2548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2548}=\sqrt{196*13}=\sqrt{196}*\sqrt{13}=14\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14\sqrt{13}}{2*3}=\frac{-14-14\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14\sqrt{13}}{2*3}=\frac{-14+14\sqrt{13}}{6} $
| (3x+4)=(x-2) | | (a+5)=(2a-3) | | x^2=-74 | | 9k^2-27k=0 | | (2x^2+3x+5=7x-1) | | t^2+8t=91 | | t^2+8t=17 | | 3/8x+x=121 | | 9.6x=63 | | 9.6x=37 | | x15=8000 | | 5m-6=-6-6m-m | | A-x=3x-1 | | a=-1.25+3 | | (D^2+3D)y=5 | | 12x-36=-96 | | 64x^2+5x=-25 | | 64x^2+40x=-25 | | -11x-2=-87 | | 1b+3=-10 | | (25364-h)-2468=18181 | | 3-7x=4x-9 | | 7+5r=52 | | 17=5t+2 | | x.07=150.000 | | 74x+9=9x+42+39 | | 5b+7-6b-10=-10 | | 564d-d-342d=1115 | | (x+6)(2x+6)=0 | | (11x-12)+(6-3x)=34x= | | 100y-153=247 | | x+3/6-x+3/8=5x/6-6 |